
Machine Learning

Lecturers: Prof. Ben Recht, Prof. Jitendra Malik, Stephen Tu
Scribe: Jonathan N. Lee

Contents

1 Introduction 3

2 Useful Linear Algebra 3
2.1 Norms and Inner Products . 3
2.2 Orthogonal Decomposition . 3
2.3 Orthogonal Projectors . 4

3 Stochastic Gradient Descent 4
3.1 Motivation . 4
3.2 Convex Functions . 5
3.3 Gradients . 5
3.4 Optimality for Convex Functions 5
3.5 Properties of Convex Functions 6
3.6 The Gradient Descent Algorithm 6
3.7 Stochastic Gradient Descent Algorithm 7

4 Support Vector Machines 8
4.1 Linear Separators and Margins 8
4.2 Slack Variables for Soft Margins 9

5 Maximum Likelihood Estimation 10
5.1 General Estimation . 10
5.2 Continuous Uniform Distribution 10
5.3 Exponential Distribution . 11
5.4 Gaussian Distribution . 11

6 Properties of Positive Definite Matrices 12

7 Multivariate Gaussians 12
7.1 Equation and Intuition . 12
7.2 Geometric Interpretation of Covariance 13

1

8 Decision Theory 14

9 Linear Regression 14
9.1 Intro . 14
9.2 Maximum Likelihood Model . 15

10 Logistic Regression 16
10.1 Logistic Transformation . 16
10.2 Likelihood . 17

11 Bias-Variance Trade-off 17
11.1 Mean Squared Error . 17
11.2 Another Perspective . 19
11.3 Bias-Variance in Linear Regression 19
11.4 Regularization . 20

12 Learning Theory and Generalization 21

13 Kernels and Kernel Methods 21

14 Unsupervised Learning 22
14.1 Introduction . 22
14.2 Singular Value Decomposition . 23
14.3 Principal Component Analysis 24

15 Unsupervised Clustering 25
15.1 k-means Clustering . 25
15.2 Hierarchical Clustering . 26
15.3 Spectral Clustering . 26

2

1 Introduction

These are not official notes from the CS 189 instructors or course staff but they
are based on CS 189 lectures and discussion sections as well as outside sources.
Email Jonathan with questions and/or corrections.

Unless otherwise stated, usually vectors will be lowercase (e.g. v), matrices
will be uppercase (e.g. A), scalar constants will be lowercase Greek letters (e.g.
γ). Random vectors will sometimes be uppercase, but it should be clear from
context. i, j, and k are usually reserved for indices.

2 Useful Linear Algebra

These notes come directly from Stephen Tu’s discussions and notes.

2.1 Norms and Inner Products

The Lp-norm is defined as:

‖x‖p =

(
n∑
i=1

|xi|p
)1/p

Any norm denoted by ‖ · ‖ in a vector space V is a function mapping V → R
with the following properties:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

2. ‖ax‖ = |a|‖x‖ for scalar a.

3. Triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

If we define the inner product in Cn as 〈x, y〉 =
∑n
i=1 xiyi, then we find that

‖x‖22 = 〈x, x〉. We also get Holder’s inequality which states that for 1
p + 1

q = 1,

|〈x, y〉| ≤ ‖x‖p‖y‖q.

2.2 Orthogonal Decomposition

Let V be a subspace of Cn, then we define the orthogonal subspace as:

V ⊥ := {v ∈ Cn : 〈w, v〉 = 0 for w ∈ V }

A fundamental idea in linear algebra that we will prove is the following:

Cn = V ⊕ V ⊥

which suggests that for some vector w ∈ Cn can be written as w = w1 +w2

where w1 ∈ V and w2 ∈ V ⊥ and that this decomposition is unique.
It is easiest first to show that a decomposition exists. Let {v1, . . . , vd} be

the orthonormal basis of V . So w can be rewritten as:

3

w =

r∑
i=1

〈w, vi〉vi +

(
w −

r∑
i=1

〈w, vi〉vi

)
:= w1 + w2

By construction, we have that w1 ∈ V . We must now show that w2 ∈ V ⊥:

〈w2, vj〉 = 〈w −
r∑
i=1

〈w, vi〉vi, vj〉

= 〈w − 〈w, vi〉vj , vj〉
= 0

Is this a unique decomposition? Assume there exist two decompositions
w = w1 + w2 = u1 + u2. Then 0 = (w1 − u1) + (w2 − u2).

Since ‖x + y‖22 = ‖x‖22 + ‖y‖22 for orthogonal vectors x and y, then 0 =
‖w1 − u1‖22 + ‖w2 − u2‖22. This tells us that the decomposition is unique.

This fact is useful for a number of reasons. In this course, we will primarily
rely on it to justify that w = Aα + wn where A>wn = 0. This is just saying
that w can be written as a vector in the subspace defined by the columns of A
and wn ∈ A⊥ since 〈wn, ai〉 = 0 for any column ai of A.

2.3 Orthogonal Projectors

Following from the previous section, the orthogonal projection PV of w onto the
subspace V = span {v1, . . . , vr} where 〈vi, vj〉 = 0 for i 6= j is given by:

PV (w) =

r∑
i=1

〈w, vi〉
vi
‖vi‖2

For a subspace U represented by orthonormal basis vectors, we can make a
stronger statement:

PV (w) = UU>w

3 Stochastic Gradient Descent

3.1 Motivation

Want to find a w∗ such that f(w∗) is minimized potentially under some con-
straints. Local minimizer is some w∗ where f(w∗) ≤ f(w) ∀w s.t. ||w−w∗|| < r
for some r ∈ R.

Global minimizer is some w∗ such that f(w∗) ≤ f(w) ∀w.

4

3.2 Convex Functions

Convex function f(·) is a function where, given any points w1 and w2, f(w) is
less than the line segment between f(w1) and f(w2) for w ∈ [w1, w2]. Formally:

f(w1 + t(w2 − w1)) ≤ f(w1) + t(f(w2)− f(w1)) where t ∈ [0, 1]

3.3 Gradients

Gradient ∇f always points in the direction of steepest ascent, which means
opposite direction is steepest descent. If we want to minimize a function with
w, then we want to drive f to be as small as possible. Taylor’s theorem will
come in handy, which we can think of as the multivariate mean-value theorem
for some local point x0:

f(x) = f(x0) +∇f(x0 + t(x− x0))>(x− x0) where t ∈ [0, 1]

We can use Taylor’s theorem to show that some vector v is in the descent
direction of f(·) at x0 if v>∇f(x0) < 0.

Proof: We plug in x = x0 + t̂v into Taylor’s theorem for some t̂ > 0 and find
that

f(x0 + t̂v) = f(x0) + t̂∇f(x0 + t̂tv)>v

= f(x0) + t̂∇f(x0 + t̃v)>v

where t̃ ∈ [0, t̂]. And we know that ∇f(x0 + t̃v)>v < 0 from our assumption
only when t̂ is small. Therefore we find that f(x0) > f(x0 + t̂v) and so v is in
the descent direction.

3.4 Optimality for Convex Functions

Want to prove that if ∇f(w∗) = 0 and f(·) is a convex function then f(w∗) ≤
f(w) for all w.

Proof : Using our definition of convexity, we get the following

f(w∗ + t(w − w∗)) ≤ f(w∗) + t(f(w)− f(w∗))

and the rearrange the terms to get

f(w) ≥ f(w∗) +
f(w∗ + t(w − w∗))− f(w∗)

t

Using Taylor’s theorem around the point w∗, we find

f(w∗ + t(w − w∗)) = f(w∗) + t∇f(w∗ + t̂((w∗ + t(w − w∗))− w∗))>(w − w∗)
= f(w∗) + t∇f(w∗ + t̂t(w − w∗))>(w − w∗)

for some t̂ ∈ [0, 1]. So

f(w∗ + t(w − w∗))− f(w∗) = t∇f(w∗ + t̂t(w − w∗))>(w − w∗)

5

Then as t tends to zero in the limit, we find that

f(w) ≥ f(w∗) +∇f(w∗)
>(w − w∗)

We find that f(w) ≥ f(w∗) when ∇f(w∗) = 0.

3.5 Properties of Convex Functions

If a function f is convex, then:

• αf is also convex if α ≥ 0.

• f + g is convex if g is also convex.

• max {f(x), g(x)} is convex if g is also convex.

• f(Ax+ b) is convex if A is a matrix and b is a vector.

All norms are convex.
Proof : We know from the triangle inequality of Lp-norms that ‖x + y‖p ≤

‖x‖p + ‖y‖p. We can also rewrite the definition of convexity as

f((1− t)w1 + tw2) ≤ (1− t)f(w1) + tf(w2) where t ∈ [0, 1]

Therefore, we can just take f(x) = ‖x‖p:

‖(1− t)w1 + tw2‖p ≤ ‖(1− t)w1‖p + ‖tw2‖p

which we know is true from the triangle inequality presented earlier.

3.6 The Gradient Descent Algorithm

We have shown the the negative gradient of a function will take us in the steepest
descent direction, and by following that direction, we will end up at a minimum
(and, necessarily, a global minimum for convex functions). Here is the descent
algorithm:

Algorithm 1 Gradient Descent Algorithm

1: procedure GDA(f)
2: Choose w0 ∈ Rn
3: k ← 0
4: while f(wk) is not converged do
5: Choose αk > 0
6: wk+1 = wk − αk∇wf(wk)
7: k ← k + 1

8: return wk

6

3.7 Stochastic Gradient Descent Algorithm

There are several reasons why we might want to introduce stochasticity into the
gradient descent algorithm. The primary reason is that often our function f(·)
that we are trying to optimize is composed of several sub-functions:

f(w) =
1

n

∑
i

fi(w)

And if n is very large, we may end up with an enormous amount of computation
just for one step in traditional gradient descent. We would then have to repeat
these steps to end up with any reasonable convergence. Instead, we could po-
tentially get an unbiased estimate of the gradient that might be more feasible
computationally. Then in the expectation, we’d have the gradient. Formally,
we have a function g(w) such that E[g(w)] = ∇f(w).

Define g(w) = ∇fi(w) where i is sampled uniformly at random from the set
{1, . . . , n}. Then we find

E[g(w)] =
∑
i

Pr(i)∇fi(w)

=
∑
i

1

n
∇fi(w)

= ∇ 1

n

∑
i

fi(w)

= ∇f(w)

So we can generate a new algorithm that takes advantage of these unbiased
estimates. Instead of evaluating the gradient over the sum of functions, we will
just choose one function at random, evaluate the gradient, update the parameter
and repeat this process.

Algorithm 2 Stochastic Gradient Descent Algorithm

1: procedure SGD(f)
2: Choose w0 ∈ Rn
3: k ← 0
4: while f(wk) is not converged do
5: Choose αk > 0
6: Sample i ∼ U(1, n)
7: wk+1 = wk − αk∇wfi(wk)
8: k ← k + 1

9: return wk

7

4 Support Vector Machines

4.1 Linear Separators and Margins

We can define a binary linear classifier as a function that classifies one side of
a hyperplane as one class and the other side as the other class. More formally,
consider a hyperplane defined by the set of points that satisfy the equation
w>x+ β = 0. So our classifier h(x) can be defined as follows:

h(x) =

{
c0 w>x+ β ≥ 0

c1 w>x+ β < 0

w is the normal vector to the hyperplane. β is considered a bias. We can
show that β

‖w‖2 is the perpendicular distance from the origin to the hyperplane.

Proof : Consider a point x0 on the plane. The projection of x0 onto the

normal vector is w>x0

‖w‖2 , which is the scalar component of x0 orthogonal to the

plane and therefore is the distance. From the definition of a hyperplane, we find
that this distance is equivalent to β

‖w‖2 .

The geometric distance, γ from the hyperplane to any given point x1 which

might not be on the plane is γ = w>x1+β
‖w‖2

Proof: If x0 is the point on the plane that is closest to x1, then x0 =
x1 + τ w

‖w‖2 .

w>x0 + β = 0

w>(x1 + τ
w

‖w‖2
) + β = 0

−w>x1 − β
‖w‖2

= τ

The margin in a linearly separable classification is the perpendicular distance
from the closest point x to the hyperplane.

Margin = min
i

−w>xi − β
‖w‖2

Notice that if we decide to scale w or b by a constant factor, the distance τ to
any point will not change. So our geometric distance is invariant to the scaling
of w and β as long as we scale both of them by the same factor. With this
in mind, we define the functional distance from a point x to the hyperplane as
f(x) = w>x+ β. This distance doesn’t have a geometric interpretation, but we
can think of it as the confidence of the classification of x. Then we can rewrite
the geometric distance as:

τ =
f(x)

‖w‖2
We’d also like to enforce the constraint that the data is classified correctly.
Notably, yif(xi) ≥ 0,∀i where yi ∈ {−1, 1} is the corresponding label for xi.

8

The question now remains: if we want a good classifier of linearly separable
data, which hyperplane should we pick? A good choice could be the one that
maximizes the margin. So we form the optimization problem

max
w,β

[min
i

yif(xi)

‖w‖2
]

This turns out to be relatively hard to solve. So we simplify things by
putting a stronger constraint on f(xi). Remember that we can scale f(x) with
invariance on the margin. Therefore we scale the functional distance such that
yif(xi) ≥ 1. So the optimization problem is:

max
w,β

1

‖w‖2

which is equivalent to
min
w,β
‖w‖2

under the constraint that w>xi + β ≥ 1. Lagrangians are used to solve this
constrained optimization problem.

The is the fundamental optimization problem for a support vector machine.

4.2 Slack Variables for Soft Margins

Not all data is linearly separable and many classifiers may perform better with
less sensitivity to outliers. We introduce slack variables to this problem in order
to amend this issues of hard-separating hyperplanes. Suppose that instead of
the hard constraint from the last section, we let

yi(w
>xi + β) ≥ 1− ξi

for ξi ≥ 0. We find that if 0 < ξi < 1 then xi is allowed to fall into the margin. If
ξ > 1 then the data point is allowed to fall on the wrong side of the hyperplane.

Of course, we must also penalize these cases in our optimization problem.

min
w,β
‖w‖2 + C

∑
i

ξi

where C is some scalar hyperparameter. We can rewrite this by substituting for
the slack variable; however, we want to put a lower bound of 0.

min
w,β
‖w‖2 + C

∑
i

(1− yi(w>x+ β))+

where (x)+ = max {0, x}
We can solve this using the stochastic gradient technique developed in the

first section.

9

5 Maximum Likelihood Estimation

5.1 General Estimation

In some cases, we’d like to the estimate the parameter of a density function
based on the samples that we draw from it. For example consider the pdf p(x|θ)
where we draw samples x1, . . . , xn i.i.d. Our estimate would look like this:

θ̂ = arg max
θ
L(θ) = arg max

θ
p(x1, . . . , xn|θ)

Since are drawn samples are i.i.d., we can simply write

p(x1, . . . , xn|θ) =

n∏
i=1

p(xi|θ)

We could now solve for θ̂ by taking the derivative wrt θ and set the derivative
equal to zero. Typically, we would want to take the log of the joint distribution
since log is monotonically increasing and would split the product into sums,
which makes the derivative easier.

arg max
θ
p(x1, . . . , xn|θ) = arg max

θ
log p(x1, . . . , xn|θ)

5.2 Continuous Uniform Distribution

Consider the pdf f(x|θ) = 1
θ where 0 ≤ x ≤ θ. Assume that we have samples

x1, . . . , xn. So our likelihood function becomes

L(θ) = p(x1, . . . , xn|θ)

=

n∏
i

1

θ

= θ−n

Take the log of the likelihood: logL(θ) = −n log(θ). Then:

d

dθ
logL(θ) =

−n
θ

We assumed that θ ≥ xn where xn ≥ xi, for i ∈ {1, . . . , n}. Otherwise it
wouldn’t make sense to get a parameter that is less than a sample we received.
We also notice that the derivative of the likelihood function is decreasing, so we
hope to choose our least value which is θ̂ = xn.

10

5.3 Exponential Distribution

This example demonstrates a more formulaic approach. Consider f(x|θ) =
θe−θx.

logL(θ) = log p(x1, . . . , xn|θ)

= log

n∏
i

p(xi|θ)

= log

n∏
i

θe−θxi

=

n∑
i

log θ − θxi

= n log θ − θ
n∑
i

xi

We then set the derivative wrt θ equal to zero.

d

dθ
logL(θ) =

n

θ
−

n∑
i

xi

Therefore
θ̂ =

n∑n
i xi

This happens to be the reciprocal of the sample mean.

5.4 Gaussian Distribution

We now look at the single variable Gaussian distribution. Again we apply the
same techniques where

p(x1, . . . , xn|µ, σ2) =
∏
i

1√
2σ2π

exp

(
− (xi − µ)2

2σ2

)
log
[
p(x1, . . . , xn|µ, σ2)

]
=
∑
i

− (xi − µ)2

2σ2
− 1

2
log
[
2σ2π

]
To find the first parameter µ, we take the derivative w.r.t µ and then set it

equal to zero (because we know the function will be concave).

∑
i

xi − µ
σ2

= 0

Therefore we find that µ = 1
n

∑
xi. For the variance:

11

log
[
p(x1, . . . , xn|µ, σ2)

]
=
∑
i

− (xi − µ)2

2σ2
− 1

2
log
[
σ2
]
− 1

2
log [2π]

∂

∂σ2
log p(·) = − n

σ2
−

(∑
i

(xi − µ)2

2

)
·
(

∂

∂σ2

1

σ2

)

= − n

σ2
+

(∑
i

(xi − µ)2

2

)
·
(

1

(σ2)2

)

=
1

2σ2

(
1

σ2

∑
i

(xi − µ)2 − n

)

So we then find that

0 = − n

2σ2
+

1

2(σ2)2

∑
i

(xi − µ)2

σ2 =
1

n

∑
i

(xi − µ)2

And we can just plugin the sample estimate mean µ̂.

6 Properties of Positive Definite Matrices

7 Multivariate Gaussians

7.1 Equation and Intuition

We define the probability density function of a Gaussian in the single variable
case as the following.

f(x|µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
In the multivariate case we consider the covariance matrix and mean vector.

f(x|µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
We define the covariance matrix Σ as

Σ = E
[
(x− µ)(x− µ)>

]

12

Consider a change of variables where z = Ax + b. The covariance is not
affected by translational shifts. Therefore:

Σ = E
[
(z − µ)(z − µ)>

]
= E

[
(Az −Aµ)(Az −Aµ)>

]
= AE

[
(z − µ)(z − µ)>

]
A>

= AΣA>

Notice that we make the assumption that the covariance matrix is invertible.
In fact it is assumed to be positive definite. There are several conditions when
it would not be positive definite. The first is when one or more of the random
variables are constant. This is because Cov(Xi, c) = 0 where c is a constant.
Therefore we would end up with a row and column of zeros in the covariance
matrix making it singular.

The second is when any RV can be written as a linear combination of the
others. Consider an RV Xc = αXa+βXb. For each component of some column
of Σ, Cov(Xi, Xc) = αCov(Xi, Xa) + βCov(Xi, Xb). So this column is just a
linear combination of the columns of Xa and Xb, so the matrix is singular.

More formally, we can see that if Σ is singular then Σv = v>Σv = 0. We saw
earlier that v>Σv = v>Cov(x)v = Cov(v>x) = Var(v>x). So we see that Σ is
singular if some linear combination of the x components leads to zero variance.

We will now show that f(x|µ,Σ) is indeed a valid probability density func-
tion. So we must show that∫

Rn

exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
dx1 . . . dxn = (2π)n/2|Σ|1/2

First we will show that the determinant of a matrix A which has a full set
of eigenvalues is the product of the eigenvalues. |A − λI| has characteristic
polynomial (λ1 − λ) . . . (λn − λ) since any value for λ such that (A− λI)v = 0
defines an eigenvalue. Now setting λ = 0, we find that |A| =

∏
i λi.

7.2 Geometric Interpretation of Covariance

Like in the univariate case, the concepts of variance and covariance play in a
role in the shape of the Gaussian distribution. The isocontours of a multivariate
Gaussian are in fact elliptical, which we will show later.

Consider the spectral decomposition of Σ−1 = UΛU−1. Because the covari-
ance matrix is a symmetric matrix, we know it is orthogonally diagonalizable and
so we can make a stronger statement: Σ−1 = UΛU>. But what does this mean
intuitively when we hit it with x? x>Σ−1x = x>UΛU>x = x>U

√
Λ
√

ΛU>x =
‖
√

ΛU>x‖22.
There are two interesting properties of U>x. The first is that since U> is

orthogonal, it preserves the dot product. Also U>x is a transformation of x
into the basis of the eigenvectors of Σ−1. And

√
Λ is a diagonal matrix so it

essentially just stretches the transformed in x in the direction of the eigenvectors.

13

Therefore, if we sampled some data points from a Gaussian, we can transform
a given point x into the coordinate system aligned with the eigenvectors by
finding U>(x − µ). You should find that it rotates such that the eigenvectors
are aligned with the axes. What happens when you plot

√
(Λ)−1U>(x − µ)?

You should find that it resembles a Gaussian distribution with µ = 0, Σ = Id.
Why is this the case? Consider the situation where x ∼ N (0, Id) and we want
to choose a transformed x′ = Tx such that we get a distribution that looks
like x ∼ N (0,Σ). So to get x into the region such that it will have the correct
density under p(x|0,Σ), we should rotate it into the axis of the eigenvectors
and scale it down, which is exactly what the inverse covariance matrix does. So
T =

√
ΛU>. See the figure below.

8 Decision Theory

9 Linear Regression

9.1 Intro

In the following section, we often will use the fact that X>X is invertible and
so it will be helpful to establish under what conditions this is true. Assume that
X is an n× d data matrix.

First let’s show that ker(X) = ker(X>X). This is trivially true in one
direction because if Xv = 0 then surely X>Xv = 0. In the other direction, the
proof can be trickier. We find that if X>Xv = 0 then v>X>Xv = ‖Xv‖22 = 0
and this is true only if Xv = 0.

Next we will show that if rank(X) = d then X>X is invertible. We saw
that ker(X) = ker(X>X) and we know that ker(X) = {0} by the rank nullity
theorem. Therefore ker(X>X) = {0} and also it is square so it is invertible.

Because of these two facts, we can see that our features must be linearly
independent in order for X>X to be invertible.

Tangent : It might also be helpful to show that Rn = ker(A)⊕ im(A>). Let
some vector v be in the kernel of A. Therefore we know that v · ai = 0 where ai
is the i-th row vector in A. This also means that v is orthogonal to any linear
combination of ai vectors. So if there is a vector a ∈ im(A>), then v must be
orthogonal to it. Therefore ker(A) = im(A>)⊥.

This explains our orthogonal decomposition of vectors. If we have some
vector w ∈ Rn, then we can write w = wn + X>a where wn is in the kernel of

14

X and so it is orthogonal to to any linear combination of the columns of X>,
namely X>a.

9.2 Maximum Likelihood Model

There are several ways that we might want to motivate linear regression. The
one that we will walk through first is the assumption that we are given data
x1, . . . , xn and outputs y1, . . . , yn where xi ∈ Rd and yi ∈ R and that there is
a distribution p(y|x) where y ∼ N (w>x, σ2). In other words, we assume that
there is a true linear model weighted by some true w and the values generated
are scattered around it with some error ε ∼ N (0, σ2). Then we just want to
obtain the max likelihood estimation.

p(Y |X,w) =

n∏
i=1

p(yi|xi, w)

log p(·) =
∑
i

− log(2πσ2)− 1

2σ2
(yi − w>xi)2

To make things simpler, we’d like to express
∑
i(yi−w>xi)2 in matrix-vector

form. We recognize that this is equal to

‖Y −Aw‖22

where A =
[
x1 . . . xn

]>
, which is just the data matrix where each row is an

entry. Therefore we just have to maximize − 1
2‖Y −Aw‖

2
2.

∇w
(
−1

2
‖Y −Aw‖22

)
= A>(Y −Aw)

ŵ = (A>A)−1A>Y

Another potentially more intuitive way to get this result would be to consider
that we are trying to match Y ≈ Aŵ. And so our error term will be the vector
Y − Aŵ and in the case where this error is minimized, we will have that the
vector Y −Aŵ is orthogonal to the columns of A and therefore in the kernel of
A>. So A>(Y −Aŵ) = 0. Then we can solve for ŵ = (A>A)−1A>Y .

In an attempt to prevent overfitting, we might want to add a regularization
term. Instead of considering these problems as maximization of likelihood, we
can instead think of them as minimization of a loss, specifically the loss that is
J(w) = 1

2‖Y −Aw‖
2
2. The solution is the same, but this gives us reason to add

regularization in the form of L2 (ridge) or L1 (lasso) norms:

JL2(w) =
1

2
‖Y −Aw‖22 + λ‖w‖22

JL1(w) =
1

2
‖Y −Aw‖22 + λ‖w‖1

15

There is potentially more justification that we can use for this regularization.
Consider the problem of maximum a posteriori (MAP), where we use Bayes’
rule to account for a prior distribution over potential w, where p(w|Y,X) ∝
p(Y,X|w)p(w). For a simple and common case, consider w ∼ N (0, τ2I). We
find that

log p(Y,X|w) = . . .− 1

2σ2
(Y −Aw)>(Y −Aw)

log p(w) = . . .− 1

2τ2
w>w

Terms not relevant to the optimization problem are condensed to the “. . .”.
Adding these log terms and minimizing the negative just gives us the L2 regu-
larized linear least squares loss that we saw earlier:

J(w) = − log p(Y,X|w)− log p(w) =
1

σ2
(Y −Aw)>(Y −Aw) +

1

2τ2
‖w‖22

10 Logistic Regression

See this documentfor detailed information.

10.1 Logistic Transformation

An important distinction must be made between two classes of models in ma-
chine learning. As we have seen before with Gaussian Discriminant Analysis,
some models seek to recreate a distribution p(x|y) and from that identify the
appropriate class y. We have also seen models that find a decision boundary.

Suppose the goal is to model a probability p(y|x). Vanilla linear regression
would not result in an output bounded between 1 and 0. Linear regression of
the log of p has a similar issue. log p(x) is unbounded only in one direction, so
a linear function is again not suitable.

Finally log p(x)
1−p(x) , known as the logistic transformation is unbounded and

can be modeled linearly:

log
p(x)

1− p(x)
= w>x

Solving for p(x) results in:

p(x) =
1

1 + exp(−w>x)

The decision rule is as follows: if p(x) ≥ 0.5 classify as y = 1; if p(x) <
0.5 classify as y = 0. These two events occur when w>x ≥ 0 and w>x < 0
respectively. Therefore, logistic regression yields linear classifier despite the
seemingly non-linear form. The advantage of logistic regression is that it gives
not only classification but also probabilities.

16

http://www.stat.cmu.edu/~cshalizi/uADA/12/lectures/ch12.pdf

For convenience, it may be helpful to define the probabilities as

p(y = 1|x) = µ(x)

and then, as a single function:

p(y|x) = µ(x)y(1− µ(x))1−y

10.2 Likelihood

Given a set of examples, the likelihood is computed as:

p(y1, . . . , yn|xi, . . . , xn) =

n∏
i=1

p(yi|xi)

=

n∏
i=1

µ(xi)
yi(1− µ(xi))

1−yi

Taking the log results in:

p(·|·) =

n∑
i=1

yi logµ(xi) + (1− yi) log(1− µ(xi))

∇wp(·|·) = ∇w

(
n∑
i=1

yi logµ(xi) + (1− yi) log(1− µ(xi))

)

=

n∑
i=1

yi
µ(xi)

∂µ(xi)

∂w
− 1− yi

1− µ(xi)

∂µ(xi)

∂w

Since ∂µ(xi)/∂w = µ(xi)(1− µ(xi))xi:

∇wp(·|·) =

n∑
i=1

(
yi

µ(xi)
− 1− yi

1− µ(xi)

)
µ(xi)(1− µ(xi))xi

=

n∑
i=1

(yi − µ(xi))xi

In vector notation, this is:

∇wp(·|·) = X>(Y − µ)

where the vector µ has components µi = µ(xi). Updates to the parameter
w can be computed from this expression in a variety of ways.

11 Bias-Variance Trade-off

11.1 Mean Squared Error

Bias and variance are two sources of error that contribute to what we call
the Mean Squared Error (MSE) which is defined as E‖θ̂ − θ‖22, where θ̂ is our

17

estimated parameter and θ is the true parameter. When we expand this term,
we get

E‖θ̂ − θ‖22 = E‖θ̂ − E[θ̂] + E[θ̂]− θ‖22
= E

[
(θ̂ − E[θ̂] + E[θ̂]− θ)>(θ̂ − E[θ̂] + E[θ̂]− θ)

]
= E

[
‖θ̂ − E[θ̂]‖22 + ‖E[θ̂]− θ‖22 + 2(θ̂ − E[θ̂])>(E[θ̂]− θ)

]
We find that the last term is just zero if we expand it and then we end up

with
E‖θ̂ − θ‖22 = E‖θ̂ − E[θ̂]‖22 + ‖E[θ̂]− θ‖22

We call the first term the variance and the second term the bias of the
estimator. These terms will help us characterize the error of our models. We
can think of variance as the susceptibility of our model to overfitting and bias
tells us how far are estimate is from the actual in expectation.

Let’s consider an interesting example of the bias-variance trade-off. Suppose
x ∼ N (µ, σ2I). Using MLE, our estimate is µ̂ = x if we are only given one
sample. Of course, we can see that E [µ̂] = µ. So our bias just goes to zero and
our MSE is defined entirely by the variance:

E‖µ̂− µ‖22 = E‖µ̂− E[µ̂]‖22
= ETr‖µ̂− E[µ̂]‖22
= ETr

[
(µ̂− E[µ̂])>(µ̂− E[µ̂])

]
= ETr

[
(µ̂− E[µ̂])(µ̂− E[µ̂])>

]
= TrE

[
(µ̂− E[µ̂])(µ̂− E[µ̂])>

]
= Tr(Cov(x))

= nσ2

where the last three equalities follow from the fact that µ̂ = x and the definition
of covariance and trace.

Now let’s do something counter-intuitive. Let’s say that our estimator in-
stead is µ̂ = αx for α ∈ [0, 1], which gives us a nonzero bias since E[µ̂] = αµ.
More specifically, we will get

E‖µ̂− µ‖ = E‖µ̂− E[µ̂]‖22 + ‖E[µ̂]− µ‖22
= E‖αx− αµ‖22 + ‖αµ− µ‖22
= α2nσ2 + (1− α)2‖µ‖22

Given this biased estimator, we find that for some values of α and ‖µ‖, we can
actually get lower MSE than from using an unbiased estimator in this simple
case. See James-Stein estimator for more details and conditions.

18

11.2 Another Perspective

Assume that we have some samples (x1, y1), . . . , (xn, yn) drawn from a random
process constrained to yi = f(xi) + ε where ε is some random variable with
zero-mean and f(·) is the true function, and we have an estimator ŷ = h(x).
The MSE with expectation taken w.r.t the same distribution is just

E(h(x)− y)2 = E(h(x)− f(x)− ε)2

= E
[
((h(x)− f(x))2

]
+ E[ε2]

This last equation follows from the fact that the cross term goes to zero since
ε is zero-mean. By applying the same add-subtract techniques we saw earlier,
we can get

E(h(x)− y)2 = E
[
(h(x)− E[h(x)])2

]
+ E

[
(f(x)− E[h(x)])2

]
+ E[ε2]

We recognize the first term as our variance, the second as bias, and the third
as irreducible error.

From here, it might be useful to define categories of estimators in general:

fs = min
f∈F

1

n

n∑
i=1

loss(f(xi), yi)

fc = min
f∈F

E [loss(f(xi), yi)]

f∗ = min
f

E [loss(f(xi), yi)]

11.3 Bias-Variance in Linear Regression

Let’s continue with the example in the previous section but let yi = x>i θ∗ + εi,
where θ∗ is the true parameter we want to estimate and E[ε] = 0 and Cov(ε) =
σ2I. Let Y ∈ Rn, X ∈ Rn×d and ε ∈ Rn be the vectors and matrices containing
the data. Alternatively, we could write

Y = Xθ∗ + ε

We will use the standard least squares estimator for this problem:

θ̂ = arg min
θ

1

2
‖Y −Xθ‖22

From earlier, we saw that the closed form solution is just

θ̂ = (X>X)−1X>Y

Now we want to find the bias and variance of estimator given the earlier
conditions. Taking the expectation of the estimator gives us:

E[θ̂] = E
[
(X>X)−1X>(Xθ∗ + ε)

]
= θ∗

19

Since ε is zero-mean. On the other hand. To compute the variance, we will
first show that the variance is the trace of the covariance of the estimator. By
expanding the MSE, the term that we will get for the variance is just E‖θ̂ −
E[θ̂]‖22. Using the properties of trace and covariance, we can get:

E‖θ̂ − E[θ̂]‖22 = ETr‖θ̂ − E[θ̂]‖22
= ETr

[
(θ̂ − E[θ̂])>(θ̂ − E[θ̂])

]
= ETr

[
(θ̂ − E[θ̂])(θ̂ − E[θ̂])>

]
= TrE

[
(θ̂ − E[θ̂])(θ̂ − E[θ̂])>

]
= Tr(Cov(θ̂))

Now we must solve for the covariance of our estimator:

Cov(θ̂) = Cov((X>X)−1X>Y)

= (X>X)−1X>Cov(Y)(X>X)−1X>)>

= (X>X)−1X>Cov(ε)X(X>X)−1

Taking the trace of this gives us:

Tr[Cov(θ̂)] = Tr
[
(X>X)−1X>Cov(ε)X(X>X)−1

]
= σ2Tr

[
(X>X)−1X>X(X>X)−1

]
= σ2Tr

[
(X>X)−1

]
We know that the trace of a matrix is just the sum of the eigenvalues (this

is simple to show for symmetric matrices via the Spectral Theorem) and that
the eigenvalues of some matrix A−1 are the reciprocals of the eigenvalues of A.
Let γ1, . . . , γd be the eigenvalues of X>X. Then we have

σ2Tr
[
(X>X)−1

]
= σ2

d∑
i=0

1

γi

11.4 Regularization

Again, consider a single x ∼ N (µ, σ2I) or alternatively x = µ + ε, where ε ∼
N (µ, σ2I). Our goal is to estimate µ, but if we take the mean squared error ‖x̂−
x‖22 we notice that we’re fitting to the noise, which motivates the regularization.
The optimum of J(x) = 1

2‖x̂ − x‖
2
2 + λ

2 ‖x̂‖
2
2 is just 1

1+λx which we realize is
similar to the form of the James-Stein estimator x̂ = αx. This is considered
noise rejection via regularization.

Another benefit of regularization is reducing number of possible solutions
to optimization problem (overfitting). So, regularization solves two problems
(reducing fit to noise and overfitting which are actually different ideas (e.g. you
can have non-noisy data and still overfit because of complicated models).

20

12 Learning Theory and Generalization

Many times in lecture we have seen the following equation:

R[w] = R[w]−RT [w] +RT [w]

where R[w] = E [loss(w, (x, y))] and RT [w] = 1
n

∑n
i=1 loss(w, (xi, yi)). So we

can think of our expected prediction error in a new way: it is the sum of the
generalization error and the training error.

If we fix a w (i.e. don’t look at the data), then

E [RT [w]] = E

[
1

n

n∑
i=1

loss(w, (xi, yi))

]

=
1

n

∑
E [loss(w, (xi, yi))]

=
1

n

∑
R[w]

= R[w]

So the empirical risk is an unbiased estimator of the risk as long as w is fixed.
For the variance, let us first assume that the loss is bounded loss(w, (x, y)) ≤ B.
Then:

Var(RT [w]) = Var

(
1

n

∑
i

loss(w, (xi, yi))

)

=
1

n2
Var

(∑
i

loss(w, (xi, yi))

)

=
1

n2

∑
i

Var (loss(w, (xi, yi)))

≤ B2

n

13 Kernels and Kernel Methods

This section will cover kernels for ridge regression and not support vector ma-
chines but the concept is the same. The point of kernel methods is to move past
linear features in a more efficient way.

min
w

1

2
‖Xw − Y ‖2 +

λ

2
‖w‖2

Given the above minimization problem, it can be shown that to minimize over
w ∈ Rd is to minimize over α ∈ Rn where w = X>α. Let w = wn+X>α where

21

Xwn = 0 via orthogonal decomposition mentioned earlier:

min
w

1

2
‖Xw − Y ‖2 +

λ

2
‖w‖2 = min

α,wn

1

2
‖X(X>α+ wn)− Y ‖2 +

λ

2
‖X>α+ wn‖2

= min
α,wn

1

2
‖XX>α− Y ‖2 +

λ

2

(
αXX>α+ 2w>nX

>α+ w>nwn
)

= min
α

1

2
‖XX>α− Y ‖2 +

λ

2
αXX>α

The first term does not depend on wn and the regularization term is minimized
when wn = 0.

K = XX> is the Gram Matrix, a matrix of inner products. Then Kij =
x>i xj . The optimization problem that we’re trying to solve depends only on n,
not d.

α can be found by taking the gradient and setting it to zero resulting in
α = (K + λI)−1Y .

For any α, evaluating a test point x is just w>x = (X>α)>x =
∑n
i=1 αix

>
i x =∑n

i=1 αiK(xi, x). So evaluation depends only on the inner products.
A function K(x, z) could act like an inner product of some feature lifting

ϕ(·) of x and z, even if the feature lifting isn’t explicitly computed. The only
requirement is that K is positive semi-definite. If this is the case then using the
Spectral Theorem with non-negative entries in Λ:

K = V >ΛV = (Λ1/2V)>(Λ1/2V)

Define xi = λ
1/2
i vi. Therefore Kij can be written as x>i xj .

There are many functions that might allow for this:

• K(x, z) = x>z (linear)

• K(x, z) = (x>z + 1)p for p ∈ Z (polynomial)

• K(x, z) = exp(−γ‖x− z‖2) (Gaussian)

14 Unsupervised Learning

The general idea of unsupervised learning is to find some sort of structure in
unlabeled data. Several ideas fall under this categorization. Most unsupervised
learning techniques end up being matrix factorization (e.g. X = AB where
A ∈ Rd×r, B ∈ Rr×n and X ∈ Rd×n.

14.1 Introduction

If we could identify some structure in the data given in an n×d matirx X, maybe
we would not have to use all of it and can therefore solve the same problems
with fewer features. Primary motivations for this are run-time, storage, gener-
alization and interpretability. Generalization is affected because the number of
samples you need in order to generalize often scales with dimension d.

The other goal we could aim for is sample reduction, or clustering.

22

14.2 Singular Value Decomposition

Every X ∈ Rd×n admits the factorization X = USV > for U ∈ Rd×d, S∈Rd×d,
and V ∈ Rn×d. S is diagonal. Let n > d. In some cases, people will take S to
be rectangular and V to be square, but it does not matter. Note that usually
matrices have been written as X ∈ Rn×d. Also U>U = Id and V >V = Id and
S = diag(σ1, σ2, . . . , σd) where σ1 ≥ σ2 ≥ . . . ≥ σd. X can also be written as:

X =

d∑
i=1

uiσiv
>
i

which can help us form a geometric interpretation of a linear transformation
that is Xz for z ∈ Rn:

Xz =

d∑
i=1

uiσi(v
>
i z)

When we take a linear transformation, we determine how much z lies in vi then
scale by σi and map according to ui.

As an example, if we look at the unit circle, we transform via rotation into
the coordinates of V , then scale components according to S and then rotate
again to align with U vectors.

What is the relationship between eigenvalues and singular values? We know
that Xvi = σiui and that X> = V S>U>. So then X>Xvi = σiX

>ui = σ2
i vi.

So vi is an eigenvector of X>X with eigenvalue λi = σ2
i . Same concept is

applied for the ui vectors: XX>ui = σ2
i ui.

Now, assume that A is positive semi-definite. Therefore we know that A has
a representation A = WΛW> by the spectral theorem where Λ = diag(λi) and
WW> = Id. In this case the eigenvalue decomposition is equal to the singular
value decomposition just by definition.

Assume that B is symmetric but not necessarily psd. We can also use the
spectral theorem to get B = WΛW>. In this case, if we order the eigenvalues
as λ1 > . . . > λk > 0 > λk+1 > λd, then we define a diagonal matrix Γ where
Γii = 1 if i ≤ k and Γii = −1 if i > k and zero elsewhere. Then we can see
that B = WΛΓ(WΓ)>. Then we have the singular value decomposition where
σi = |λi|. The eigenvalues of a matrix have no relation to the singular values
(see example from lecture).

What if we want to find max‖z‖=1 ‖Cz‖ for some matrix C?

‖Cz‖2 = z>V S2V >z

=
∑
i

σ2
i (v>i z)

2

which is maximized when z = v1.

23

If we have a matrix A that is rank deficient such that σr+1 = 0 and σj = 0
for all j > r + 1, then we know that

A =

r∑
i=1

σiuiv
>
i

which means that our matrix can be written much more concisely (factored).
In this case, we can write X = UrSrV

>
r where Ur =

[
u1 . . . ur

]
, Sr =

diag(σ1, . . . , σr) and Vr =
[
v1 . . . vr

]
Now consider the case where we let X̂ = U>r X = SrV

>
r . So we’ve reduced

X̂ to a lower dimensional state. Given any classifier w, using the fundamental
theorem of linear algebra, we can write w = Urα + wn where U>r wn = 0. So if
we look at w>X knowing that X has the form X = UrSrV

>
r , then

w>X = (Urα)>X + w>n UrSrV
>
r

= (Urα)>X

So to do any sort of classification, the only component we need is Urα. This
tells us that if we train w in the high dimensional space, we can transform
it down to the low dimensional space and have the same classifier (and vice-
versa). Equivalently we could just train on the low dimensional space much
more efficiently. This is because hitting X with w is the same has hitting X̂
with a lower dimensional α.

14.3 Principal Component Analysis

What does it mean for data to have low rank? In the two dimensional case,
this could be a line. Often times, data is not so simple, but we might find that
certain singular values are much larger than others. In other words, the data is
explainable along a subset of the singular vectors.

The process of removing these unimportant components is called Principal
Component Analysis. The algorithm follows several steps:

1. Take as input data X ∈ Rd×n and target dimension r.

2. CenterX by computingXc =
[
x1 − µ . . . xn − µ

]
where µ = 1

n

∑n
i=1 xi.

3. Compute svd(Xc) = USV >

4. Return
[
X̂ = SrV

>
r , Ur, µ

]
Ur and µ will be used for transforming and centering new data. So consider

a new data point x′. Our processed version will be x̂′ = U>r (x′ − µ).
One way that we can think of PCA is that we are identifying the directions

of maximum variance. E.g. r = 1. Then we can setup the optimization problem

24

max‖u‖=1 var(u>xi), where we’re trying to find the direction. If we assume that
the mean is zero:

var(u>xi) =
1

n

n∑
i=1

(u>xi)
2

=
1

n

n∑
i=1

u>xix
>
i u

=
1

n
u>

(
n∑
i=1

xix
>
i

)
u

=
1

n
u>XX>u

So the maximum value of this is just the maximum eigenvalue of XX> which
is σ2

1 and the maximizer is u = u1.
We can now remove the influence of u1 on each xi by computing x̃i =

xi − (u>1 xi)ui. So if we end up with X̃ which is orthogonal to u1, then we can
again try to find that direction of maximum variance, which will be u2. This
process can be continued.

The total variance in our data is just

d∑
i=1

σi(X)2

where σi(A) indicates the i-th singular value of A. And the total variance
in the reduced data set is

r∑
i=1

σi(X)2

So we can use these two to compare the amount of variance that we capture
in the reduced data set.

15 Unsupervised Clustering

Motivations for clustering data points include segmentation, archetype identifi-
cation, fast lookups, etc.

15.1 k-means Clustering

Partition points into k clusters where µj is the mean of cluster j and xi is in
cluster j if ‖xi − µj‖22 ≤ ‖xi − µj′‖22 ∀j′. Cj = {i : xi in cluster j}. µj =
1
|Cj |

∑
i∈Cj

xi.

Cost of k-means algorithm is measured by

min
µ1,...,µk

n∑
i=1

min
1≤j≤k

‖xi − µj‖22

25

This optimization problem is hard to solve. Algorithm:

1. Initialize µ1, . . ., µk

2. Assign i ∈ Cj if ‖xi − µj‖2 ≤ ‖xi − µj′‖2 for j 6= j′.

3. Set µj = 1
|Cj |

∑
i∈Cj

xi for 1 ≤ j ≤ k.

4. Unless assignments don’t change, goto 2.

This algorithm is an example of alternating minimization where the overall
problem is hard to solve but by alternating which components are fixed, the
problem is divided into small, easier problems. Fix the means, then find the
best assignment. Fix the assignments, then find the best means.

Initialization could be done randomly. Better algorithm is k-means++.

• Pick µ1 at random from the data.

• For c = 1, . . . , k − 1.

– Define for i = 1, . . . , n, di = min1≤j≤c ‖xi − µj‖2

– Set pi = di∑
i di

– Set µc+1 = xi w.p. pi.

This ensures that no mean will be picked twice since min distance is zero.

15.2 Hierarchical Clustering

The general idea here is to find a hierarchy among the data by iteratively fusing
clusters. First define a method of measuring distance between clusters. There
could be many ways but one is average linkage:

d(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

dist(a, b)

Another is centroid linkage:

d(A,B) = dist(µA, µB)

Greedy Algorithm: initialize with n clusters (one for each point). Ci = xi.
For all pairs of clusters, (A,B), compute d(A,B). Cnew = A∪B where d(A,B)
is minimized. Terminates when just one cluster remains.

15.3 Spectral Clustering

View the data as a graph with data points as notes and similarities as edges.

So sim(xi, xj) =
x>
i xj

‖xi‖‖xj‖ , or sim(xi, xj) = k(xi, xj) for some kernel k, or

sim(xi, xj) = 1 if ‖xi − xj‖ ≤ D0 and 0 otherwise.

26

Graph partition occurs when two subsets V1 and V2 of a graph V have the
properties that V1 ∪ V2 = V and V1 ∩ V2 = 0.

Define the cut(V1, V2) as the weight of the edges that have one node in V1
and one node in V2. So

cut(V1, V2) =
∑
i∈V2

∑
j∈V1

wij

Want to minimize the amount that gets cut, but also encourage not cutting
nothing. Balanced cut: minimize cut(V1, V2) subject to |V1| = |V2| = n/2.

Define a cut indicator v ∈ Rn where vi = 1 if i ∈ V1 and -1 if i ∈ V2. So
then the equation for the cut becomes:

cut(V1, V2) =
1

4

n∑
i=1

n∑
j=1

wij(vi − vj)2

=
1

4
v>Lv

where Lij = −wij if i 6= j and Lij =
∑
k 6=i wik if i = j. L is the graph

Laplacian. L is symmetric and positive semi definite if all the weights are not
negative. Also, L1 = 0 which is L times the all-ones vector.

Then the problem becomes minimize v>Lv subject to vi ∈ {1,−1} and
1>v = 0. But we can do an approximation for the first condition and only
constrain v>v = n. If the ones constraint did not exist, then the minimum is
the smallest eigenvalue but v must be orthogonal to the ones vector and so the
solution becomes the second smallest eigenvalue. This is because the smallest
eigenvalue corresponds to the all-ones vector.

The components of v are no longer 1 and -1, so we determine which set they
are part of by their signs.

27

	Introduction
	Useful Linear Algebra
	Norms and Inner Products
	Orthogonal Decomposition
	Orthogonal Projectors

	Stochastic Gradient Descent
	Motivation
	Convex Functions
	Gradients
	Optimality for Convex Functions
	Properties of Convex Functions
	The Gradient Descent Algorithm
	Stochastic Gradient Descent Algorithm

	Support Vector Machines
	Linear Separators and Margins
	Slack Variables for Soft Margins

	Maximum Likelihood Estimation
	General Estimation
	Continuous Uniform Distribution
	Exponential Distribution
	Gaussian Distribution

	Properties of Positive Definite Matrices
	Multivariate Gaussians
	Equation and Intuition
	Geometric Interpretation of Covariance

	Decision Theory
	Linear Regression
	Intro
	Maximum Likelihood Model

	Logistic Regression
	Logistic Transformation
	Likelihood

	Bias-Variance Trade-off
	Mean Squared Error
	Another Perspective
	Bias-Variance in Linear Regression
	Regularization

	Learning Theory and Generalization
	Kernels and Kernel Methods
	Unsupervised Learning
	Introduction
	Singular Value Decomposition
	Principal Component Analysis

	Unsupervised Clustering
	k-means Clustering
	Hierarchical Clustering
	Spectral Clustering

